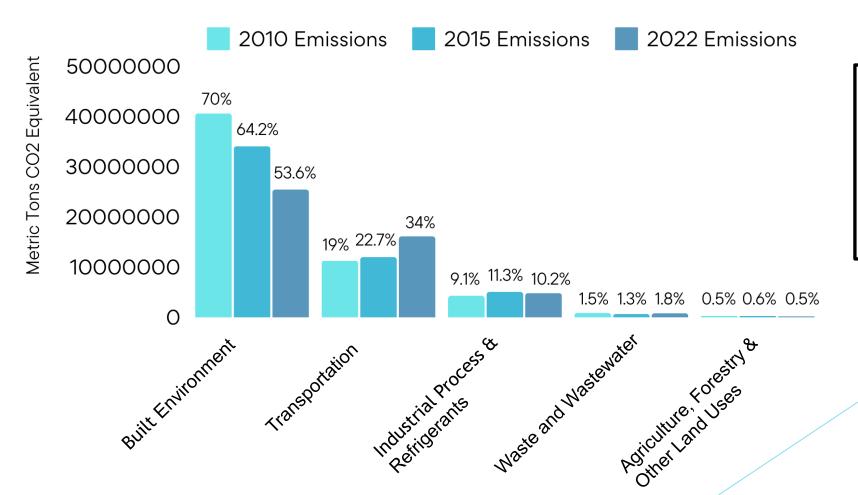
Climate Pollution Reduction Grant Update

January 21, 2025 – Executive Advisory Committee

Overview of Grant


- ► Funding for Planning and Implementation
 - ▶ MO, IL, St. Louis, Kansas City and Chicago received planning grants
 - ► State of IL received an implementation grant
- ► Current deliverable is a "Comprehensive Climate Action Plan" (CCAP)
- ► Grant program objective is to reduce pollution
- What we want to achieve
 - ► Identify impactful projects and practices
 - ► Improve public health
 - ► Maximize cost savings
 - ► Grow the job market
 - ► Increase our resiliency
 - ► Do foundational research to save cities time and money

CCAP process summarized:

- 1. Calculate emissions
- 2. Define scenarios
- 3. Gather project ideas
- 4. Estimate reductions
- Estimate cost and benefits
- 6. Look for funding

1. Calculate emissions

ST. LOUIS REGIONAL GREENHOUSE GAS INVENTORIES

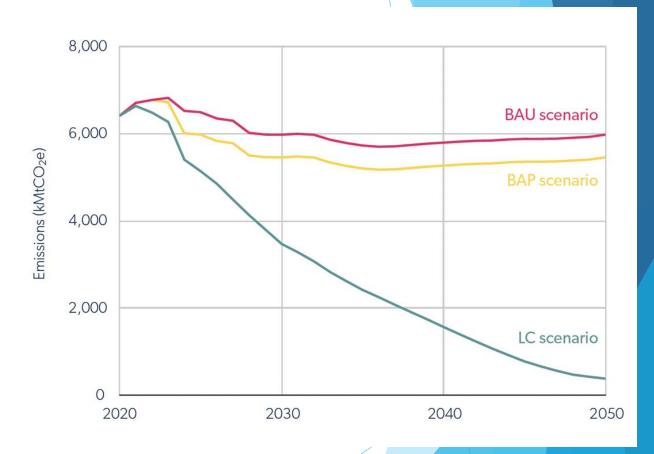
Total Regional Emissions

58,415,579
2010
53,065,499
2022
47,441,486
mtCO2e

2. Define scenarios

Step 1: Refine the base year (2022)

Step 2: Business-as-Usual (BAU) scenario

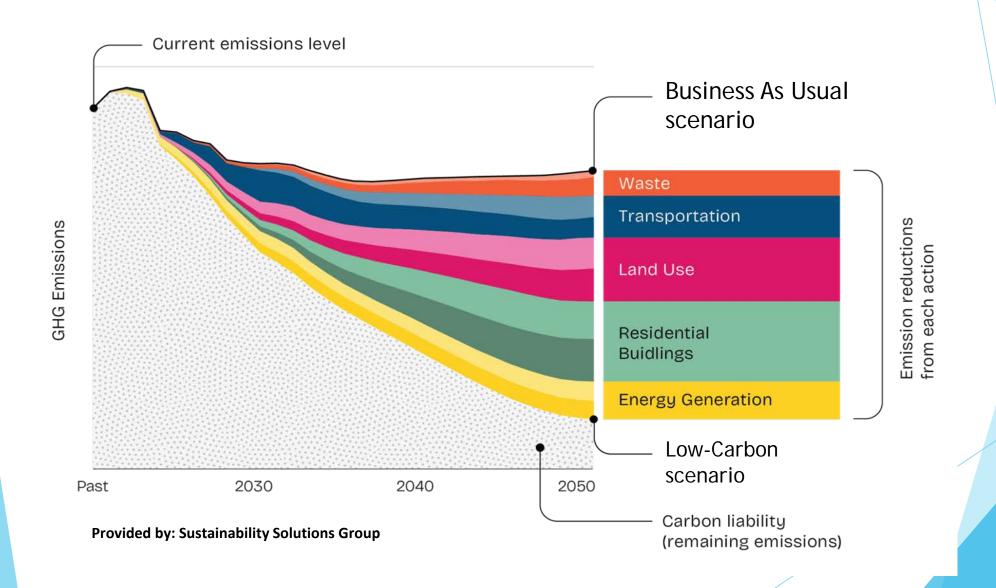

- 2024-2050
- No change in current policies and addition actions than the ones we have done already

Step 3: Business-as-Planned (BAP) scenario

- 2024-2050
- Current policies and plans implemented

Step 4: Low-Carbon scenario

 Identify steps to maximize emissions reduction


Provided by: Sustainability Solutions Group

3. Gather project ideas

Engagement will Determine Mix of Measures for the Low-Carbon Scenario

- ► Municipal Workshops
 - ► Green Cities Challenge participants (IL and MO)
 - ► City of St. Louis Climate Action Plan coordination
 - **▶** 24:1
- ► Focus Groups
- ➤ On-line feedback mechanisms
- ▶ Open Houses

4. Estimate reductions

Additional Analyses

- ▶ Other pollutants reduced
- ▶ Potential benefits directed to lowincome communities
- ► Jobs analysis
 - ➤ What's needed to implement/install the projects
 - ► What training is needed to fill the gaps

Additional Analyses

- Other pollutants reduced
- ► Potential benefits directed to lowincome communities
- ▶ Jobs analysis
 - ➤ What's needed to implement/install the projects
 - ► What training is needed to fill the gaps

Regional, State, and County-Level Emissions Changes

Energy Impacts Inputs:


Distributed (rooftop) solar PV total capacity: 1 MW

Annual Emissions Changes • Power Sector Only Midwest Region

		Original	Post Change	Change
	Generation (MWh)	465,908,150	465,906,390	-1,760
	Total Emissions from Fossil Generation	n Fleet		
	SO ₂ (lb)	468,139,270	468,137,400	-1,860
	NO _X (lb)	380,922,710	380,921,110	-1,600
	Ozone season NO _X (lb) 🚺	162,987,920	162,987,150	-770
Ž	CO ₂ (tons)	364,671,150	364,669,720	-1,430
	PM _{2.5} (lb)	51,524,550	51,524,370	-190
	VOCs (lb)	11,567,710	11,567,660	-50
	NH ₃ (lb)	12,614,150	12,614,090	-60
	AVERT-derived Emission Rates:	Average Fossil		Marginal Fossil
	SO ₂ (lb/MWh)	1.005		1.058
	NO _X (lb/MWh)	0.818		0.905
	Ozone season NO _X (lb/MWh) 🐧	0.744		0.932
	CO ₂ (tons/MWh)	0.783		0.809
	PM _{2.5} (lb/MWh)	0.111		0.107
	VOCs (lb/MWh)	0.025		0.029
	NH ₃ (lb/MWh)	0.027		0.035

Additional Analyses

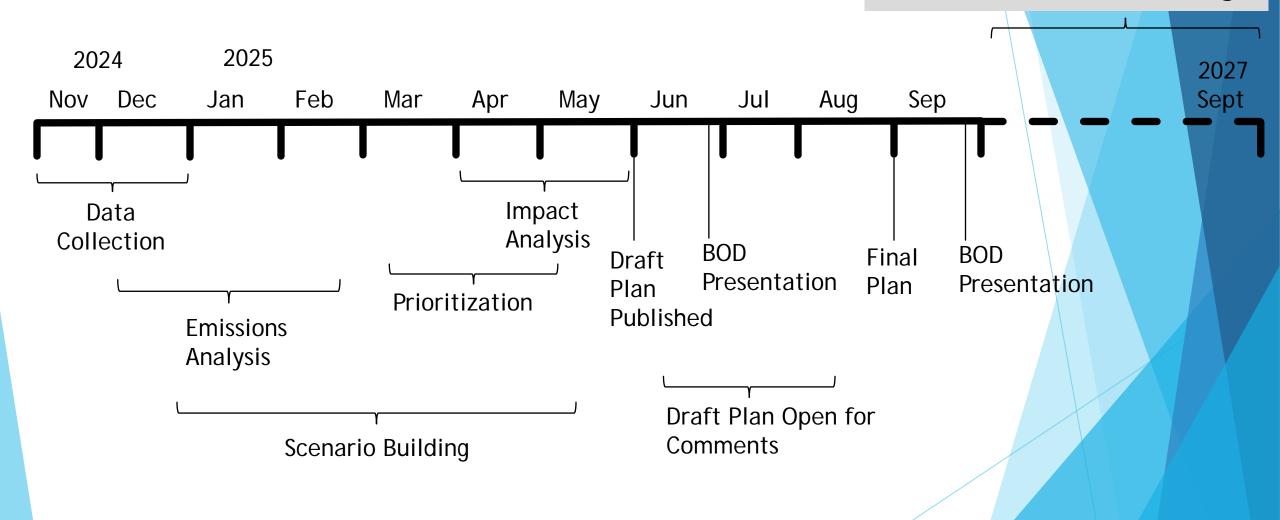
- ▶ Other pollutants reduced
- ▶ Potential benefits directed to lowincome communities
- ► Jobs analysis
 - ➤ What's needed to implement/install the projects
 - ► What training is needed to fill the gaps

Energy Spending Household Income Total Energy Burden

Image source: vitalcommunities.org

Additional Analyses

- ▶ Other pollutants reduced
- ➤ Potential benefits directed to lowincome communities
- ► Jobs analysis
 - ➤ What's needed to implement/install the projects
 - ► What training is needed to fill the gaps


WHAT ARE CLEAN ENERGY JOBS?

Clean energy jobs include jobs in both traditional and emerging sectors like renewable energy generation, energy efficiency, clean vehicles, grid and storage, and clean fuels.

Project Timeline

6. Look for funding

Questions